MEMORIA DE CÁLCULO ESTRUCTURAS

CONSTRUCCIÓN DE CERCO PERIMÉTRICO PARA EL COLEGIO PERUANO NORTEAMERICANO ABRAHAM LINCOLN

PROFESIONAL	
FECHA	Agosto 2024

GRUPO TPO

- contacto@grupotpo.com.pe
- +51 924 691 950
- **(01)** 266 7812
- grupotpo.com.pe
- Calle Elías Aguirre 141, Of 506, Miraflores, Lima.

MEMORIA DE CÁLCULO DE ESTRUCTURAS

1. DATOS GENERALES

PROYECTO : Construcción de Cerco Perimétrico en el Colegio

Peruano Norteamericano Abraham Lincoln

PROPIETARIO : Cooperativa de Servicios Ocupacionales Abraham

Lincoln

UBICACIÓN : Av. José Antonio Encinas N°475, Urb. Pque. de

Monterrico, La Molina, Lima.

• USO : Educación

2. DOCUMENTOS DE REFERENCIA

Los documentos de referencia están comprendidos por las normas y reglamentos de diseño vigentes a emplear en el desarrollo del proyecto.

2.1. REGLAMENTO NACIONAL DE EDIFICACIONES (RNE)

- Norma E.020 Cargas
- Norma E.030 Diseño Sismorresistente
- Norma E.050 Suelos y Cimentaciones
- Norma E.060 Concreto Armado
- Norma E.070 Albañilería
- Norma E.090 Acero

2.2. REFERENCIAS Y COMPLEMENTOS

ACI 318 Building Code Requeriments for Structural Concrete.

3. CARACTERÍSTICAS MECÁNICAS DE LOS MATERIALES

3.1. CONCRETO

 Resistencia a la compresión: f'c=175 kg/cm2 (cimientos y sobrecimientos)

Resistencia a la compresión: f'c=210 kg/cm2 (columnas y vigas)
 Módulo de elasticidad: E=15,000x√210=217,370.65 kg/cm2

3.2. ACERO

Resistencia a la fluencia del Acero A615: f'y=4,200 kg/cm2

3.3. ALBAÑILERÍA

Ladrillo industrial King Kong 18 huecos:

Resistencia a la compresión: f'm=65 kg/cm2

Módulo de elasticidad: Em=500 f'm = 32,500 kg/cm
 Módulo de corte: Gm=0.40 Em = 13,000 kg/cm2

Ladrillo:

Resistencia a la compresión mínimo: f'b=130 kg/cm2

Porcentaje máximo de vacíos:

4. CARGAS DE DISEÑO

4.1. CARGA MUERTA

Corresponden a cargas permanentes en base a su peso propio.

Peso propio elementos de concreto armado: 2400 kg/m3
Peso propio elementos de concreto simple: 2300 kg/m3
Peso propio muros de albañilería: 1800 kg/m3

4.2. CARGA DE SISMO

Según la NTE E.030, los parámetros sísmicos a usar son los siguientes:

• Factor de Zona: Z = 0.45 (Zona 1)

• Factor de Uso U = 1.50

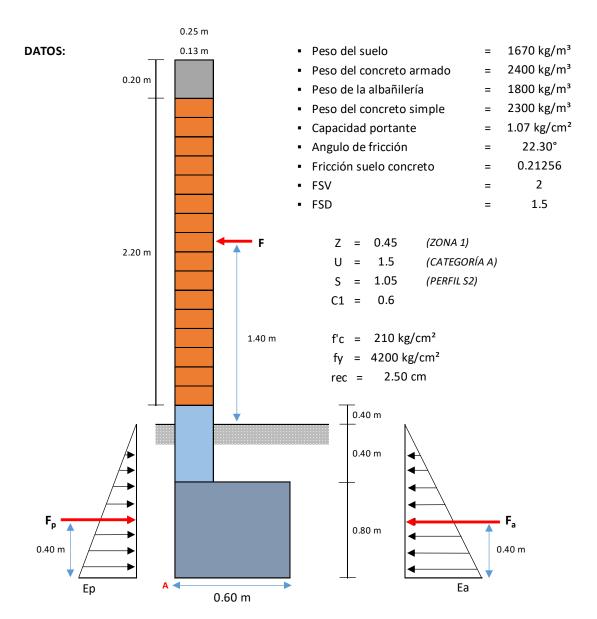
Factor de Suelo
 S2 S=1.05

4.3. ALBAÑILERÍA

Ladrillo industrial King Kong 18 huecos:

• Resistencia a la compresión: f'm=65 kg/cm2

Módulo de elasticidad: Em=500 f'm = 32,500 kg/cm
 Módulo de corte: Gm=0.40 Em = 13,000 kg/cm2


Ladrillo:

Resistencia a la compresión mínimo: f'b=130 kg/cm2

Porcentaje máximo de vacíos:
 30%

5. DISEÑO ESTRUCTURAL

EMPUJE PASIVO:

EMPUJE ACTIVO:

$$Kp = \cos\beta * \left(\frac{\cos\beta + \sqrt{\cos\beta^2 - \cos\emptyset^2}}{\cos\beta - \sqrt{\cos\beta^2 - \cos\emptyset^2}}\right)$$

$$Ka = \cos\beta * \left(\frac{\cos\beta - \sqrt{\cos\beta^2 - \cos\emptyset^2}}{\cos\beta + \sqrt{\cos\beta^2 - \cos\emptyset^2}}\right)$$

Para este caso $\beta = 0^{\circ}$ (el relleno no forma ningún ángulo con la horizontal)

Kp = 2.22298

Ka = 0.44985 Fa = 540.90 kg/m

Fp = 2672.91 kg/m

FUERZA HORIZONTAL DE SISMC se asume que actúa a la mitad de la altura del muro.

Peso de viga solera = 120.00 kg/m

F = 0.5 * Z * U * S * P

Peso del muro = 514.80 kg/m

F = 269.18 kg/m

Peso del sobrecimiento

= 124.80 kg/m 759.60 kg/m

(solo la parte que está sobre del nivel 0.00)

FUERZAS Y MOMENTOS ESTABILIZADORES:

Se tomarán momentos con respecto al punto A:

ELEMENTO	ALTURA	ESPESOR	PESO	PARCIAL	POSICIÓN	MOMENTO	
Viga solera	0.20 m	0.25 m	2400 kg/m ³	120.00 kg/m	120.00 kg/m x = 0.125 m		
Muro	2.20 m	0.13 m	1800 kg/m³	514.80 kg/m	x = 0.065 m	33.462 kg-m	
Sobrecimiento	0.80 m	0.15 m	2400 kg/m ³	288.00 kg/m	x = 0.075 m	21.600 kg-m	
Cimiento corrido	0.80 m	0.60 m	2300 kg/m ³	1104.00 kg/m	x = 0.300 m	331.200 kg-m	
Relleno	0.40 m	0.47 m	1670 kg/m³	313.96 kg/m	x = 0.485 m	152.271 kg-m	
Empuje pasivo				2672.91 kg/m	y = 0.400 m	1069.164 kg-m	
				2340.76 kg/m		1622.697 kg-m	

MOMENTO ESTABILIZADOR = 1622.697 kg-m

FUERZAS Y MOMENTOS DESESTABILIZADORE: Se tomarán momentos con respecto al punto A:

ELEMENTO	MENTO PARCIAL POSICIÓN		MOMENTO	
Empuje activo	540.90 kg/m	y = 0.400 m	216.358 kg-m	
Fuerza de sismo	269.18 kg/m	y = 2.600 m	699.876 kg-m	
			916.235 kg-m	

MOMENTO DESESTABILIZADOR = 916.235 kg-m

FACTOR DE SEGURIDAD AL VOLTEO:

$$FSV = \frac{ME}{MD}$$
 FSV = $\frac{1622.697 \text{ kg-m}}{916.235 \text{ kg-m}} = 1.77105 \dots \text{OK: NO HAY VOLTEO}$

FACTOR DE SEGURIDAD AL DESLIZAMIENTO:

$$Fh = f * P + Fp$$
 $FH = F + Fa$ $FH = 269.18 \text{ kg/m} + 540.90 \text{ kg/m}$ $FH = 3170.46 \text{ kg/m}$ $FH = 810.08 \text{ kg/m}$

$$FSD = \frac{Fh}{FH}$$
 FSD = $\frac{3170.462 \text{ kg-m}}{810.079 \text{ kg-m}} = 3.91377 \dots \text{OK: NO HAY DESLIZAMIENTO}$

VERIFICACIÓN DE PRESIONES EN LA CIMENTACIÓN:

Punto de aplicación de la fuerza resultante:

Excentricidad de la fuerza resultante:


$$X_0 = \frac{M_e - M_d}{P} = 0.302 \text{ m}$$
 $e = \frac{B}{2} - X_0 = -0.002 \text{ m}$

Se debe cumplir que
$$e < \frac{B}{6}$$
 ; B/6 = 0.100 m ... OK: CAE DENTRO DEL TERCIO CENTRAL

$$\sigma = \frac{P}{B} \left[1 \pm \frac{6 * e}{B} \right] \qquad \qquad \sigma_1 = \quad 0.383 \text{ kg/cm}^2 \qquad < \quad \sigma_s = \quad 1.07 \text{ kg/cm}^2 \qquad \text{CONFORME}$$

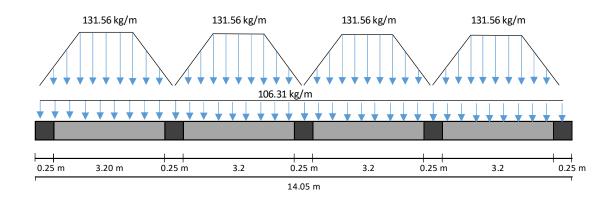
$$\sigma_2 = \quad 0.397 \text{ kg/cm}^2 \qquad < \quad \sigma_s = \quad 1.07 \text{ kg/cm}^2 \qquad \text{CONFORME}$$

$$\sigma_2 = \quad 0.397 \text{ kg/cm}^2 \qquad < \quad \sigma_s = \quad 1.07 \text{ kg/cm}^2 \qquad \text{CONFORME}$$

VERIFICACIÓN Y DISEÑO DE ARRIOSTRES (VIGAS):

L 3.20 m (longitud del paño crítico) 2.20 m h (altura del muro) 0.15 m е (espesor incluyendo tarrajeo) Z 0.45 (Zona 1: LIMA) U 1.5 (Categoría "A": ESENCIAL) S 1.05 (PERFIL S2) $\gamma^*e = 270 \, \text{kg/m}^2$ (peso de la albañilería tarrajeada)

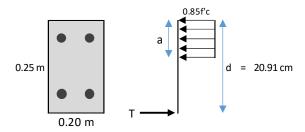
TABLA 12						
VALORES DEL COEFICIENTE DE						
MOMENTOS «m» y DIMENSION CRITICA «a»						
CASO 1. MURO CON CUATRO BORDES ARRIOSTRADOS						
a = Menor dimensión						
b/a = 1,0 1,2 1,4 1,6 1,8 2,0 3,0 ∞						
m = 0,0479 0,0627 0,0755 0,0862 0,0948 0,1017 0,118 0,125						
CASO 2. MURO CON TRES BORDES ARRIOSTRADOS						
a = Longitud del borde libre						
b/a = 0,5 0,6 0,7 0,8 0,9 1,0 1,5 2,0 ∞						
m = 0,060 0,074 0,087 0,097 0,106 0,112 0,128 0,132 0,133						
CASO 3.MURO ARRIOSTRADO SOLO EN SUS BORDES						
HORIZONTALES						
a = Altura del muro						
m = 0,125						
CASO 4. MURO EN VOLADIZO						
a = Altura del muro						
m = 0,5						


Carga sísmica uniforme: $w = 0.5 * Z * U * S * \gamma e$ = 95.68 kg/m² Momento sísmico: $M_S = m * w * a^2$ = 36.32 kg-m/m

a = 2.20 m (menor dimensión) b = 3.20 m (otra dimensión)

b/a	m		
1.4	0.0755		
1.45455	0.07842		
1.6	0.0862		

Esfuerzo de tracción actuante: $fm = \frac{6 * Ms}{t^2} = 1.289 \text{ kg/cm}^2 \text{ ... fm<1.5kg/cm}^2 : \text{CORRECTO}$



Wu1 = (carga proveniente de la albañilería) 131.56 kg/m Wu2 = (carga proveniente de la viga de arriostre) 106.31 kg/m

Mu = 230.531 kg-mVu = 372.998 kg

ANALISIS POR FLEXÓN DE LA SECCIÓN PROPUESTA:

Diámetro asumido: $\emptyset = 3/8$ "
As = 0.71 cm²

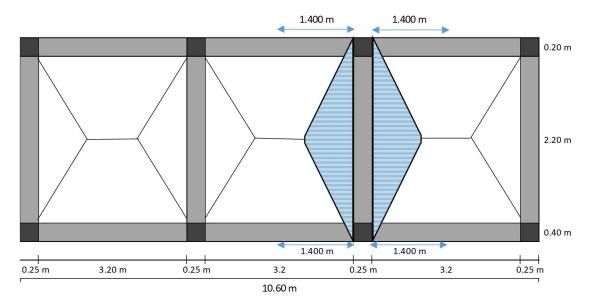
Acero a usar: Arriba : $2 \emptyset 3/8 " = 1.43 \text{ cm}^2$

Abajo : $2 \emptyset 3/8 " = 1.43 \text{ cm}^2$

T = 0.90*As*fy = 5386.93 kg

C = 0.85 * f'c*b*a = T despejando: a = 1.51 cm

Mur = T*(d-a/2) = 108589.961 kg-m (momento resistente) ... Mr>Mu: OK $Vc = \emptyset * 0.53 * \sqrt{f'c} * b * d = 2730.49 \text{ kg}$ (resistencia al corte) ... Vc>Vu: OK


DETERMINAICIÓN DE LOS ESTRIBOS DE CONFINAMIENTO

Ø 1/4"; 1 @ 5, 4@ 10, r @ 25 cm.

(estribo mínimo de acuerda a E.070)

VERIFICACIÓN Y DISEÑO DE ARRIOSTRES (COLUMNAS):

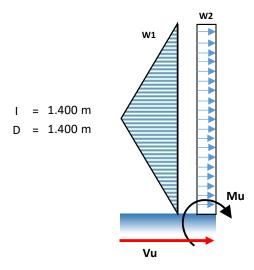

L 3.20 m (longitud del paño crítico) h 2.80 m (altura del muro) е 0.15 m (espesor incluyendo tarrajeo) Z 0.45 (Zona 1: LIMA) U 1.5 (Categoría "A": ESENCIAL) S 1.05 (PERFIL S2) $= 270 \, \text{kg/m}^2$ (peso de la albañilería tarrajeada)

	TABLA 12 VALORES DEL COEFICIENTE DE							
MOM	ENTO	S «m	» y DI	MENS	ION (CRITIC	CA «a	>>
	CASO 1. MURO CON CUATRO BORDES ARRIOSTRADOS a = Menor dimensión							
b/a = 1,0 m = 0,0479								
CASO 2. MU a = Longitud				ES ARI	RIOSTE	RADOS		
b/a = 0,5								
m = 0,060 0,074 0,087 0,097 0,106 0,112 0,128 0,132 0,133 CASO 3.MURO ARRIOSTRADO SOLO EN SUS BORDES HORIZONTALES a = Altura del muro m = 0,125								
CASO 4. MU a = Altura de m = 0.5		VOLA	DIZO					

Carga sísmica uniforme: $W = 0.5 * Z * U * S * \gamma e$ = 95.68 kg/m²

DISEÑO DE ARRIOSTRES SEGÚN LA NORMA E.060:

Wu1 = (carga proveniente de la albañilería del lado izquierdo) 167.44 kg/m
 Wu1 = (carga proveniente de la albañilería del lado derecho) 167.44 kg/m
 Wu2 = (carga proveniente de la columna de arriostre) 132.89 kg/m
 Vcviga = (carga proveniente de la cortante de la viga) 372.998 kg

Mu = 2221.688 kg-mVu = 1213.922 kg

ANALISIS POR FLEXÓN DE LA SECCIÓN PROPUESTA:

Diámetro asumido: $\emptyset = 1/2$ "

As = 1.27 cm²

Acero a usar: Arriba : $2 \emptyset 1/2 " = 2.53 cm^2$

Abajo : $2 \emptyset 1/2'' = 2.53 \text{ cm}^2$

T = 0.90 * As * fy = 9576.77 kg

C = 0.85 * f'c*b*a = T despejando: a = 2.15 cm

Mur = T*(d-a/2) = 189998.091 kg-m (momento resistente) ... Mr>Mu: OK $Vc = \emptyset * 0.53 * \sqrt{f'c} * b * d = 3413.11$ kg (resistencia al corte) ... Vc>Vu: OK

DETERMINAICIÓN DE LOS ESTRIBOS DE CONFINAMIENTO

 \emptyset 1/4"; 1 @ 5, 4@ 10, r @ 25 cm.

(estribo mínimo de acuerda a E.070)

7. CONCLUSIONES

Luego de realizar los análisis respectivos a los elementos estructurales del cerco perimétrico, se concluye que éstas CUMPLEN con las solicitaciones símicas, cargas muertas y vivas, de acuerdo con las normas E.070 Albañilería, E.030 Diseño Sismorresistente y E.060 Concreto Armado.